
Document Number: MD00068
Revision 1.16

August 20, 2004

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

Core Coprocessor Interface Specification

Copyright © 2000-2004 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying,
reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies
or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright
laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise.
MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission
in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items. If the user of this information, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this information, or any related
documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPS Technologies logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 25Kf, 24K,
24Kc, 24Kf, R3000, R4000, R5000, ASMACRO, ATLAS, At The Core Of The User Experience., BusBridge, CorExtend,
CoreFPGA, CoreLV, EC, FastMIPS, JALGO, MALTA, MDMX, MGB, MIPS RISC CERTIFIED POWER logo, PDTrace, the
Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or registered trademarks of
MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: S1.13, Built with tags: 2B

Core Coprocessor Interface Specification, Revision 1.16

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

Table of Contents

Core Coprocessor Interface Specification ...4
1 Introduction ..4
2 Coprocessor Instructions ..5
3 Signal Descriptions ..8
4 Configurations ..14

4.1 Types of Coprocessors ...14
4.1.1 Single Coprocessor 1 ...14
4.1.2 Single Coprocessor 2 ...14
4.1.3 Single Coprocessor 1 and 2 ...15
4.1.4 Dual Coprocessors using Separate Interfaces ..15
4.1.5 No Coprocessors ..15

4.2 Data Transfer Widths ...15
4.2.1 64-bit Transfer Width ..15
4.2.2 32-bit Transfer Width (Cop2 only) ..15

4.3 Out-of-Order Data Transfers ..16
4.4 Multi-Issue Support ...16

4.4.1 Single-Issue Support ..16
4.4.2 Limited Dual-Issue Support ...17
4.4.3 Dual Arithmetic Issues ..17
4.4.4 Additional Multi-Issue Support ...17

5 Interface Protocols ...18
5.1 Overview of Transfers ...18
5.2 Instruction Dispatch Transfer ..20
5.3 To Coprocessor Data Transfer ...22
5.4 From Coprocessor Data Transfers ...22
5.5 Condition Code Checking ..23
5.6 GPR Data Transfers ...23
5.7 Coprocessor Exceptions ...23
5.8 Instruction Nullification Transfers ...24
5.9 Instruction Killing Transfer ...25
5.10 Transfer Example ...25
5.11 Miscellaneous Coprocessor Signals ...27

5.11.1 Hardware Present Signaling ..27
5.11.2 Coprocessor Idle ..27
5.11.3 Reset ..27

Appendices ...29
A Revision History ..29
Core Coprocessor Interface Specification, Revision 1.16 3

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

1 Introduction

he
oupled to
veloped

es.
 (and use
cluding

te on the

es of

teger
teger

.

Core Coprocessor Interface Specification

1 Introduction

This document describes the Coprocessor Interface standard supported by various MIPS™ processor cores. T
Coprocessor Interface is designed to enable coprocessors, such as FPUs and Graphics Engines, to be tightly c
an integer processor core. Such coprocessors can be internally developed by MIPS Technologies or externally de
by customers or third party design teams.

Note: For clarity, the terminteger processor core describes the MIPS processor core to which a coprocessor attach
The integer processor core can do more than integer processing, however. In fact, it can have an internal FPU
the Coprocessor Interface for COP2). By the same token, the coprocessor can itself do any kind of processing, in
integer calculations.

The Coprocessor Interface has the following features:

• The interface is easy to understand. By keeping the interface as simple as possible, designers can concentra
coprocessor’s functionality rather than its interface.

• Performance is not compromised. The Coprocessor Interface is compatible with the high-performance featur
MIPS microprocessor cores.

• Minimal interface logic is required, which reduces area and power overhead.

• The interface is highly configurable:

– 32-bit or 64-bit data transfers

– COP1 and/or COP2 supported

– From 0 to 7 out-of-order data transfers

– Single issues up to eight issues supported

• A coprocessor built for a low-performance integer processor core can be connected to higher performance in
processor cores. Furthermore, a high-performance coprocessor can be connected to a lower-performance in
processor core.

This document contains the following sections:

• Section 2, "Coprocessor Instructions" describes the specific instructions supported by the Coprocessor Interface

• Section 3, "Signal Descriptions" describes the signals that make up the interface.

• Section 4, "Configurations" describes the configuration options available with the Coprocessor Interface.

• Section 5, "Interface Protocols" describes the cycle-by-cycle behavior of the signals.
Core Coprocessor Interface Specification, Revision 1.16 4

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

2 Coprocessor Instructions

, and

 the
2 Coprocessor Instructions

The Coprocessor Interface supports all coprocessor instructions currently defined in the MIPS32™, MIPS64™
MIPS-3D™ architecture specifications.

These coprocessor instructions are divided into three classes.

• Instructions that perform arithmetic operations (calledArithmetic COP Ops)

• Instructions that move data into the Coprocessor (calledTo COP Ops)

• Instructions that move data out of the Coprocessor (calledFrom COP Ops)

The explicit classification of the opcodes is given below. For a detailed description of these instructions, refer to
MIPS ISA definition or to the Software User’s Manual of the appropriate integer processor core.

Arithmetic COP Ops:

• COP1 arithmetic instructions (including COP1X and MDMX instructions)

• IR[31:26] = 010001 AND IR[25] = 1

• IR[31:26] = 010011 AND IR[5:4] != 00

• IR[31:26] = 011110

• COP2 arithmetic instructions

• IR[31:26] = 010010 AND IR[25] = 1

• COP1 branch instructions (BC1 instructions)

• IR[31:26] = 010001 AND IR[25:24] = 01

• COP2 branch instructions (BC2 instructions)

• IR[31:26] = 010010 AND IR[25:24] = 01

• Conditional COP1 movement instructions (MOVF, MOVT instructions)

• IR[31:26] = 000000 AND IR[5:0] = 000001

Following COP1 arithmetic instructions test coprocessor condition bits:

• BC1, BC2, MOVF and MOVT (as defined above)

Following COP1 arithmetic instructions test integer processor core registers:

• ALNV.PS

• IR[31:26]=010011 AND IR[5:0]=011110

• ALNV.OB ALNV.QH

• IR[31:26]=011110 AND IR[5:2]=0110 AND IR[0]=1

• MOVN.S MOVZ.S MOVN.D MOVZ.D MOVN.PS MOVZ.PS

• IR[31:26]=010001 AND IR[25:21]=10000 AND IR[5:1]=01001

• IR[31:26]=010001 AND IR[25:21]=10001 AND IR[5:1]=01001

• IR[31:26]=010001 AND IR[25:21]=10110 AND IR[5:1]=01001

For the remainder of this document, the terms ’Arithmetic COP Op’ and ’arithmetic instruction’ are used
interchangeably.
Core Coprocessor Interface Specification, Revision 1.16 5

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

2 Coprocessor Instructions
From COP Ops:

• COP1 From instructions (including COP1X instructions)

• IR[31:26] = 111001

• IR[31:26] = 111101

• IR[31:26] = 010001 AND IR[25:23] = 000

• IR[31:26] = 010011 AND IR[5:3] = 001 AND IR[2:0] !=111

• COP2 From instructions

• IR[31:26] = 111010

• IR[31:26] = 111110

• IR[31:26] = 010010 AND IR[25:23] = 000

Of the above definedFrom COP Ops, following are 32-bit instructions

• MFC1, CFC1, SWC1, SWXC1

• IR[31:26] = 010001 AND IR[25:23]=000 AND IR[21]=0

• IR[31:26]=111001

• IR[31:26]= 010011 AND IR[5:0]=001000

• MFHC1 (MIPS32 Release 2 only)

• IR[31:26] = 010001 AND IR[25:21]=00011

• MFC2, CFC2, SWC2

• IR[31:26] = 010010 AND IR[25:23]=000 AND IR[21]=0

• IR[31:26]=111010

• MFHC2 (MIPS32 Release 2 only)

• IR[31:26] = 010010 AND IR[25:21]=00011

Of the above definedFrom COP Ops, following are 64-bit instructions

• DMFC1, SDC1, SDXC1, SUXC1

• IR[31:26] = 010001 AND IR[25:21]=00001

• IR[31:26]=111101

• IR[31:26]= 010011 AND IR[5:3]=001 AND IR[1:0]=01

• DMFC2, SDC2

• IR[31:26] = 010010 AND IR[25:21]=00001

• IR[31:26]=111110

Remaining instructions are reserved opcodes.

To COP Ops:

• COP1 To instructions (including COP1X instructions)

• IR[31:26] = 110001

• IR[31:26] = 110101
Core Coprocessor Interface Specification, Revision 1.16 6

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

2 Coprocessor Instructions
• IR[31:26] = 010001 AND IR[25:23] = 001

• IR[31:26] = 010011 AND IR[5:3] = 000

• COP2 To instructions

• IR[31:26] = 110010

• IR[31:26] = 110110

• IR[31:26] = 010010 AND IR[25:23] = 001

Of the above definedTo COP Ops, following are 32-bit instructions

• MTC1, CTC1, LWC1, LWXC1

• IR[31:26] = 010001 AND IR[25:23]=001 AND IR[21]=0

• IR[31:26]=110001

• IR[31:26]= 010011 AND IR[5:0]=000000

• MTHC1 (MIPS32 Release 2 only)

• IR[31:26] = 010001 AND IR[25:21]=00111

• MTC2, CTC2, LWC2

• IR[31:26] = 010010 AND IR[25:23]=001 AND IR[21]=0

• IR[31:26]=110010

• MTHC2 (MIPS32 Release 2 only)

• IR[31:26] = 010010 AND IR[25:21]=00111

Of the above definedTo COP Ops, following are 64-bit instructions

• DMTC1, LDC1, LDXC1, LUXC1

• IR[31:26] = 010001 AND IR[25:21]=00101

• IR[31:26]=110101

• IR[31:26]= 010011 AND IR[5:3]=000 AND IR[1:0]=01

• DMTC2, LDC2

• IR[31:26] = 010010 AND IR[25:21]=00101

• IR[31:26]=110110

Remaining instructions are reserved opcodes.
Core Coprocessor Interface Specification, Revision 1.16 7

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

3 Signal Descriptions

ns of

lock of

P1,
, see
3 Signal Descriptions

Table 5, Table 6, andTable 7 describe all of the Coprocessor Interface signals. Note that the signals are grouped
according to their logical function rather than alphabetically or by their expected physical location. The interactio
signals within these functional groups are described inSection 5, "Interface Protocols".

A separate clock signal is not included in the Coprocessor Interface. All signals are synchronous to the input c
the integer processor core.

The following tables describe the various attributes of the signals.Table 1shows the direction of the I/O signal relative
to the integer processor core.Table 2 describes how the prefix of a signal determines whether it is required for CO
COP2, or both.Table 3 andTable 4 describe issue group attributes. For details about the concept of issue groups
Section 4.4, "Multi-Issue Support" on page 16.

Table 1 Signal Direction Key

Dir Description

In Input to the integer processor core.

Out Output of the integer processor core.

SIn Static Input to the integer processor core. These signals are normally tied to either power or ground.

SOut Static Output of the integer processor core. These signals are normally tied to either power or ground.

Table 2 Signal Coprocessor Category

Prefix Description

CP_
Required for both COP1 and COP2.
Note: These signals may change name to CP1_ or CP2_ when used in certain configurations, refer to
sections4.1.1 through4.1.4 onpage 15.

CP1_ Required for only COP1.

CP2_ Required only for COP2.

Table 3 Issue Group Key

Issue
Group Description

Comb Signal is part of Combined issue groups.

Arith Signal is part of Arithmetic issue groups.

TF Signal is part of To/From issue groups.

NONE Signal is not part of any issue groups.

Table 4 Signal Issue Group Number

Suffix Description

_m m determines to which issue group a signal belongs (0≤ m ≤ 7).
Core Coprocessor Interface Specification, Revision 1.16 8

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

3 Signal Descriptions
Table 5 Interface Signal Descriptions (Required for both COP1 and COP2)

Signal Name Dir
Issue

Group Description

Instruction Dispatch

CP_ir_m[31:0] Out
Comb,
Arith,

TF

Coprocessor Instruction Word.This 32-bit bus contains the
coprocessor instruction. It is available in the cycle beforeCP1_as_m,
CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, orCP2_fs_m is asserted.

CP_irenable_m Out
Comb,
Arith,

TF

Enable Instruction Registering.When this signal is deasserted, no
instruction strobes are asserted in the following cycle. When this signal
is asserted, there can be an instruction strobe asserted in the following
cycle. Instruction strobes includeCP1_as_m, CP1_ts_m, CP1_fs_m,
CP2_as_m, CP2_ts_m, CP2_fs_m.

CP_order_m[2:0] Out
Comb,
Arith,

TF

Coprocessor Dispatch Order.This signal signifies the program order of
instructions when more than one instruction is issued in a single cycle.
Each instruction dispatched has an order value associated with it. There
must always be one instruction whose order value is 0. Order values must
increment by 1 when more than one instruction is issued in a cycle. This
signal is valid whenCP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m,
CP1_fs_m, orCP2_fs_m is asserted.

CP_adisable_m SIn Comb,
Arith

Inhibit Arithmetic Dispatch. When this signal is asserted, the integer
processor core is prevented from dispatching an arithmetic instruction
using this issue group.

CP_tfdisable_m SIn Comb,
TF

Inhibit To/From Dispatch. When this signal is asserted, the integer
processor core is prevented from dispatching a To/From instruction
using this issue group.

CP_inst32_m Out
Comb,
Arith,

TF

MIPS32 Compatibility Mode – Instructions. When this signal is
asserted, the dispatched instruction is restricted to the MIPS32 subset of
instructions. Please refer to theMIPS64™ Architecture Specificationfor
a complete description of MIPS32 compatibility mode. This signal is
valid the cycle beforeCP1_as_m, CP2_as_m, CP1_fs_m, CP2_fs_m,
CP1_ts_m, orCP2_ts_m is asserted.

CP_endian_m Out
Comb,
Arith,

TF

Byte Ordering. When this signal is asserted, the processor is using
big-endian byte ordering for the dispatched instruction. When this signal
is deasserted, the processor is using little-endian byte ordering. This
signal is valid the cycle beforeCP1_as_m, CP2_as_m, CP1_fs_m,
CP2_fs_m, CP1_ts_m, orCP2_ts_m is asserted.

To Coprocessor Data (For all To COP Ops)

CP_tds_m Out Comb,
TF

Coprocessor To Data Strobe.This signal is asserted when To COP Op
data is available onCP_tdata_m.

CP_torder_m[2:0] Out Comb,
TF

Coprocessor To Order.This signal specifies for which outstanding To
COP Op the data is. This signal is valid only whenCP_tds_mis asserted.

CP_torder_m[2:0] Order

3’b000 Oldest outstanding To COP Op data transfer

3’b001 2nd oldest To COP Op data transfer

3’b010 3rd oldest To COP Op data transfer

3’b011 4th oldest To COP Op data transfer

3’b100 5th oldest To COP Op data transfer

3’b101 6th oldest To COP Op data transfer

3’b110 7th oldest To COP Op data transfer

3’b111 8th oldest To COP Op data transfer
Core Coprocessor Interface Specification, Revision 1.16 9

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

3 Signal Descriptions
CP_tordlim_m[2:0] SIn Comb,
TF

To Coprocessor Data Out-of-Order Limit. This signal forces the
integer processor core to limit how much it can reorder To COP Data.
The value on this signal corresponds to the maximum allowed value to
be used onCP_torder_m[2:0] .

CP_tdata_m[63:0] Out Comb,
TF

To Coprocessor Data. Data to be transferred to the coprocessor. For
single-word transfers, data is available onCP_tdata_m[31:0] . This bus
is valid whenCP_tds_m is asserted.

Note: In 32-bit data transfer size configurations, this bus is reduced to
CP_tdata_m[31:0] .

From Coprocessor Data (For all From COP Ops)

CP_fds_m In Comb,
TF

Coprocessor From Data Strobe.This signal is asserted when From
COP Op data is available onCP_fdata_m.

CP_forder_m[2:0] In Comb,
TF

Coprocessor From Order. This signal specifies for which outstanding
From COP Op the data is. This signal is valid only whenCP_fds_m is
asserted.

CP_fordlim_m[2:0] SOut Comb,
TF

From Coprocessor Data Out-of-Order Limit. This signal forces the
coprocessor to limit how much it can reorder From COP Data. The value
on this signal corresponds to the maximum allowed value to be used on
CP_forder_m[2:0] .

CP_fdata_m[63:0] In Comb,
TF

From Coprocessor Data.This 64-bit bus contains data to be transferred
from coprocessor. For single-word transfers, data must be duplicated on
bothCP_fdata_m[63:32] andCP_fdata_m[31:0] . This bus is valid when
CP_fds_m is asserted.

Note: In 32-bit data transfer size configurations, this bus is reduced to
CP_fdata_m[31:0] .

Coprocessor Condition Code Check (Only for BC1, MOVF, MOVT, BC2 Ops)

CP_cccs_m In Comb,
Arith

Coprocessor Condition Code Check Strobe.This signal is asserted
when condition code check results are available onCP_ccc_m.

CP_ccc_m In Comb,
Arith

Coprocessor Condition Code Check. This signal is valid when
CP_cccs_m is asserted. When this signal is asserted, the instruction
checking the condition code should proceed with its execution (branch
or move data). When this signal is deasserted, the instruction should not
execute its conditional operation (do not branch and do not move data).

Coprocessor Exceptions

CP_excs_m In
Comb,
Arith,

TF

Coprocessor Exception Strobe.This signal is asserted when
coprocessor exception signalling is available onCP_exc_m.

Table 5 Interface Signal Descriptions (Required for both COP1 and COP2)

Signal Name Dir
Issue

Group Description

CP_forder_m Order

3’b000 Oldest outstanding From COP Op data transfer

3’b001 2nd oldest From COP Op data transfer

3’b010 3rd oldest From COP Op data transfer

3’b011 4th oldest From COP Op data transfer

3’b100 5th oldest From COP Op data transfer

3’b101 6th oldest From COP Op data transfer

3’b110 7th oldest From COP Op data transfer

3’b111 8th oldest From COP Op data transfer
Core Coprocessor Interface Specification, Revision 1.16 10

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

3 Signal Descriptions
CP_exc_m In
Comb,
Arith,

TF

Coprocessor Exception.When this signal is deasserted, the coprocessor
is not causing an exception. When this signal is asserted, the coprocessor
is causing an exception. The type of exception is encoded on the signal
CP_exccode_m[4:0] . This signal is valid whenCP_excs_m is asserted.

CP_exccode_m[4:0] In
Comb,
Arith,

TF

Coprocessor Exception Code.This signal is valid whenCP_excs_mis
asserted andCP_exc_m is asserted.

Instruction Nullification

CP_nulls_m Out
Comb,
Arith,

TF

Coprocessor Null Strobe. This signal is asserted when a nullification
signal is available onCP_null_m.

CP_null_m Out
Comb,
Arith,

TF

Nullify Coprocessor Instruction. When this signal is deasserted, the
integer processor core is signalling that the instruction is not nullified.
When this signal is asserted, the integer processor core is signalling that
the instruction is nullified. This signal is valid whenCP_nulls_m is
asserted.

Instruction Killing

CP_kills_m Out
Comb,
Arith,

TF

Coprocessor Kill Strobe.This signal is asserted when kill signalling is
available onCP_kill_m.

CP_kill_m[1:0] Out
Comb,
Arith,

TF

Kill Coprocessor Instruction. This signal indicates whether or not a
coprocessor instruction is killed. It is valid whenCP_kills_mis asserted.

Miscellaneous

CP_reset Out NONE
Coprocessor Reset. This signal is asserted when the integer processor
core performs a hard or soft reset. At a minimum, this signal is asserted
for two cycles.

CP_idle In NONE

Coprocessor Idle.This signal is asserted when the coprocessor logic is
idle. It enables the integer processor core to go into sleep mode and shut
down the internal integer processor core clock. This signal is valid only
if CP1_fppresent, CP1_mdmxpresent, orCP2_present is asserted.

Table 5 Interface Signal Descriptions (Required for both COP1 and COP2)

Signal Name Dir
Issue

Group Description

CP_exccode_m[4:0] Exception

5’b01010 Reserved Instruction Exception

5’b01111 Floating-Point Exception

5’b10000 Available for implementation-specific use

5’b10010 COP2 Exception

other values

Reserved.

If other values are signalled, the operation of the
integer processor core is UNDEFINED.

CP_kill_m[1:0] Type of Kill

2’b00 Instruction is not killed and can commit
its results2’b01

2’b10
Instruction is killed (not due to
CP_exc_m)

2’b11 Instruction is killed (due toCP_exc_m)
Core Coprocessor Interface Specification, Revision 1.16 11

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

3 Signal Descriptions
Table 6 Coprocessor Interface Signal Descriptions (Required only for COP1)

Signal Name Dir
Issue

Group Description

Instruction Dispatch

CP1_as_m Out Comb,
Arith

Coprocessor 1 Arithmetic Instruction Strobe. This signal is asserted in the
cycle after an Arithmetic COP1 Op instruction is available onCP_ir_m. If
CP1_abusy_m was asserted in the previous cycle, this signal is not asserted. In
any cycle, at most one of the following signals can be asserted at a time in a
particular issue group:CP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m,
CP2_fs_m.

CP1_abusy_m In Comb,
Arith

Coprocessor 1 Arithmetic Busy.When this signal is asserted, a Coprocessor 1
arithmetic instruction is not dispatched.CP1_as_m is not asserted in the cycle
after this signal is asserted.

CP1_ts_m Out Comb,
TF

Coprocessor 1 To Strobe. This signal is asserted in the cycle after a To COP1
Op instruction is available onCP_ir_m. If CP1_tbusy_m was asserted in the
previous cycle, this signal is not asserted. In any cycle, at most 1 of the following
signals can be asserted at a time in a particular issue group:CP1_as_m,
CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, CP2_fs_m.

CP1_tbusy_m In Comb,
TF

To Coprocessor 1 Busy. When this signal is asserted, a To COP1 Op is not
dispatched.CP1_ts_m is not asserted in the cycle after this signal is asserted.

CP1_fs_m Out Comb,
TF

Coprocessor 1 From Strobe.This signal is asserted in the cycle after a From
COP1 Op instruction is available onCP_ir_m. If CP1_fbusy_m was asserted in
the previous cycle, this signal is not asserted. In any cycle, at most one of the
following signals can be asserted at a time in a particular issue group:
CP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, CP2_fs_m.

CP1_fbusy_m In Comb,
TF

From Coprocessor 1 Busy. When this signal is asserted, a From COP1 Op is
not dispatched.CP1_fs_mis not asserted in the cycle after this signal is asserted.

CP1_fr32_m Out
Comb,
Arith,

TF

MIPS32-Compatibility Mode – Registers. When this signal is asserted, the
dispatched instruction uses the MIPS32-compatible register file. This signal is
valid the cycle beforeCP1_as_m, CP1_fs_m, orCP1_ts_m is asserted.

GPR Data (Only for ALNV.PS, ALNV.fmt, MOVN.fmt, MOVZ.fmt Arithmetic COP1 Ops)

CP1_gprs_m Out Comb,
Arith

GPR Strobe. This signal is asserted when additional general-purpose register
information is available onCP1_gpr_m.

CP1_gpr_m[3:0] Out Comb,
Arith

GPR Data.This bus supplies additional data from the integer general-purpose
register file.CP1_gpr_m[2:0] is valid whenCP1_gprs_mis asserted and only for
ALNV.PS and ALNV.fmt instructions.CP1_gpr_m[3] is valid when
CP1_gprs_m is asserted and only for MOVN.fmt and MOVZ.fmt instructions.

Miscellaneous

CP1_fppresent SIn NONE COP1 FPU Present.This signal must be asserted when COP1 FPU hardware is
connected to the Coprocessor Interface.

CP1_mdmxpresent SIn NONE COP1 MDMX Present.This signal must be asserted when COP1 MDMX
hardware is connected to the Coprocessor Interface.

CP1_gpr_m[2:0] RS
(Valid only for ALNV.PS, ALNV.fmt)

Binary encoded Lower 3 bits of RS register contents

CP1_gpr_m[3] RT Zero Check
(Valid only for MOVN.fmt, MOVZ.fmt)

0 RT!= 0

1 RT==0
Core Coprocessor Interface Specification, Revision 1.16 12

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

3 Signal Descriptions
Table 7 Coprocessor Interface Signal Descriptions (Required only for COP2)

Signal Name Dir
Issue

Group Description

Arithmetic Dispatch

CP2_as_m Out Comb,
Arith

Coprocessor 2 Arithmetic Instruction Strobe.This signal is asserted in the
cycle after an Arithmetic COP2 Op instruction is available onCP_ir_m. If
CP2_abusy_mwas asserted in the previous cycle, this signal is not asserted. In any
cycle, at most one of the following signals can be asserted at a time in a particular
issue group:CP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, CP2_fs_m.

CP2_abusy_m In Comb,
Arith

Coprocessor 2 Arithmetic Busy.When this signal is asserted, a Coprocessor 2
arithmetic instruction is not dispatched.CP2_as_mis not asserted in the cycle after
this signal is asserted.

CP2_ts_m Out Comb,
TF

Coprocessor 2 To Strobe.This signal is asserted in the cycle after a To COP2 Op
instruction is available onCP_ir_m. If CP2_tbusy_mwas asserted in the previous
cycle, this signal is not asserted. In any cycle, at most one of the following signals
can be asserted at a time in a particular issue group:CP1_as_m, CP2_as_m,
CP1_ts_m, CP2_ts_m, CP1_fs_m, CP2_fs_m.

CP2_tbusy_m In Comb,
TF

To Coprocessor 2 Busy.When this signal is asserted, a To COP2 Op is not
dispatched.CP2_ts_m is not asserted in the cycle after this signal is asserted.

CP2_fs_m Out Comb,
TF

Coprocessor 2 From Strobe.This signal is asserted in the cycle after a From
COP2 Op instruction is available onCP_ir_m. If CP2_fbusy_mwas asserted in the
previous cycle, this signal is not asserted. In any cycle, at most 1 of the following
signals can be asserted at a time in a particular issue group:CP1_as_m, CP2_as_m,
CP1_ts_m, CP2_ts_m, CP1_fs_m, CP2_fs_m.

CP2_fbusy_m In Comb,
TF

From Coprocessor 2 Busy.When this signal is asserted, a From COP2 Op is not
dispatched.CP2_fs_m is not asserted in the cycle after this signal is asserted.

CP2_kd_mode_m Out
Comb,
Arith,

TF

Kernel/Debug Mode Indication. When this signal is asserted the dispatched
instruction is executed in either Kernel or Debug mode. This signal is valid the
cycle beforeCP2_as_m, CP2_fs_m, orCP2_ts_m is asserted.

Miscellaneous

CP2_present SIn NONE COP2 Present. This signal must be asserted when COP2 hardware is connected
to the Coprocessor Interface.

CP2_tx32 SIn NONE
COP2 32-bit Transfers.When this signal is asserted, the integer unit must cause
an RI exception for 64-bit COP2 TF instructions. This static input must always be
valid.
Core Coprocessor Interface Specification, Revision 1.16 13

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

4 Configurations

rocessor
options
 signals.

nteger

nteger

d. The

signals
e states.

ts all

phics
4 Configurations

The Coprocessor Interface allows a coprocessor to be connected to a MIPS integer processor core. An integer p
core can implement various options of the Coprocessor Interface as described in this section. These configuration
impact the Coprocessor Interface in two ways: the signals required to be implemented and the width of the bus

Figure 1 shows a simple block diagram of how the Coprocessor Interface connects a single coprocessor to an i
processor core.

Figure 1 Coprocessor Interface Block Diagram

4.1 Types of Coprocessors

This section lists the different kinds of coprocessors that can be supported by an integer processor core. The i
processor core supports one or more of these options.

Each configuration option described below includes a description of which of the three signal categories is require
signals of the Coprocessor Interface are divided into three categories:

• Signals that are required for both COP1 and COP2 implementations are named “CP_*”.

• Signals that are required only for COP1 implementations are named “CP1_*”.

• Signals that are required only for COP2 implementations are named “CP2_*”.

Note:Depending on the implementation of this interface on the integer processor core and the coprocessor, some
while present are unused. Unused input signals on a particular implementation must be connected to their inactiv

4.1.1 Single Coprocessor 1

COP1 is reserved for a floating-point coprocessor in the MIPS architecture. The Coprocessor Interface suppor
COP1, COP1X, MDMX, and MIPS-3D instructions as defined by the MIPS ISA.

• Signals named “CP_*” are required to be implemented and must be renamed “CP1_*”.

• Signals named “CP1_*” are required to be implemented.

• 64-bit data transfers are required to be implemented.

Signals not included in the implemented interface can be ignored in the signal descriptions. For instance,CP_idle is
renamed toCP1_idle. CP1_idle is valid only whenCP1_fppresent or CP1_mdmxpresent is asserted.

4.1.2 Single Coprocessor 2

The function of Coprocessor 2 is user-definable and is intended to allow special-purpose engines, such as gra
accelerators, to be integrated into the architecture.

Integer
Processor

Core Coprocessor

Coprocessor
Interface
Core Coprocessor Interface Specification, Revision 1.16 14

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

4 Configurations

1 and

. In this

 COP2
sumed.

for 32-bit

ignal a

ation,
sor core.

64),
• Signals named “CP_*” are required to be implemented and must be renamed “CP2_*”.

• Signals named “CP2_*” are required to be implemented.

Signals not included in the implemented interface can be ignored in the signal descriptions. For instance,CP_idle is
renamed toCP2_idle. CP2_idle is valid only whenCP2_present is asserted.

4.1.3 Single Coprocessor 1 and 2

A user-defined coprocessor can be designed that implements functionality from both COP1 and COP2.

• All signals are required to be implemented. No renaming will take place as "CP_*" signals are shared for COP
COP2 functionality.

• 64-bit data transfers are required to be implemented.

4.1.4 Dual Coprocessors using Separate Interfaces

An integer processor core can feature two independent Coprocessor Interfaces: one for COP1 and one for COP2
case, each interface is functionally independent of the other. Each requires a full set of I/O signals as described inSection
4.1.1, "Single Coprocessor 1" andSection 4.1.2, "Single Coprocessor 2".

4.1.5 No Coprocessors

If a Coprocessor Interface is unused then all inputs must be tied to their inactive state, which is logic zero.

4.2 Data Transfer Widths

An integer processor core can support 64-bit or 32-bit data transfer sizes.

4.2.1 64-bit Transfer Width

An integer processor core that implements COP1 must support 64-bit data transfers. A processor that supports
can optionally support 64-bit data transfers. For the remainder of this document, this configuration option is as

An integer processor core that supports 64-bit data transfers can be connected to COP2 coprocessors designed
transfers. The coprocessor must assertCP2_tx32. Furthermore theCP_fdata_m[31:0] output from the coprocessor must
be connected toCP_fdata_m[31:0] andCP_fdata_m[63:32] of the integer processor core.

Note: WhenCP2_tx32 is asserted, instructions that transfer 64 bits of data cause the integer processor core to s
reserved instruction exception. These instructions include DMFC2, DMTC2, LDC2, and SDC2.

4.2.2 32-bit Transfer Width (Cop2 only)

An integer processor core that supports only COP2 can optionally support only 32-bit transfers. In this configur
the use of instructions that transfer 64 bits of data causes a reserved instruction exception from the integer proces

With this configuration, the following restrictions apply:

• The integer processor core must signal Reserved Instruction exception for DMFC2 (MIPS64), DMTC2 (MIPS
LDC2 (MIPS32), and SDC2 (MIPS32) instructions.

• CP2_tx32cannot be implemented. A 32-bit integer processor core always works as ifCP2_tx32is asserted, thus the
signal is not needed.
Core Coprocessor Interface Specification, Revision 1.16 15

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

4 Configurations

ata and
ger

is out
s

r
s

cessors.
gic.

ecifies
apply:

ue group

signals
e states.

llows:

tions

d.
• 32-bit buses are required to be implemented:

– CP_tdata_m[63:0] is reduced toCP_tdata_m[31:0] .

– CP_fdata_m[63:0] is reduced toCP_fdata_m[31:0] .

4.3 Out-of-Order Data Transfers

An integer processor core can support a configurable degree of out-of-order data transfers on both the To COP D
From COP Data transfer interfaces. The Coprocessor Interface includes handshake signals that allow any inte
processor core to work with any coprocessor.

For To COP Data, an integer processor core can reorder data for up to eight instructions. However, it must limit th
of order data transfer according toCP_tordlim_m[2:0] . This signal allows the coprocessor to limit reordering to only a
much as it can handle.

Similarly for From COP Data, a coprocessor can return data for up to eight instructions out of order. The intege
processor core can limit this reordering using theCP_fordlim_m[2:0] static output. This signal works the same way a
CP_tordlim_m.

4.4 Multi-Issue Support

The Coprocessor Interface is extensible to support single-issue to multi-issue integer processor cores and copro
Furthermore, it enables compatibility between any integer processor core and any coprocessor without glue lo

Multi-issue support is easily achieved by duplicating certain signals of the Coprocessor Interface. This section sp
in detail exactly what needs to be duplicated for the different configuration options. In general, the following rules

• Signals are grouped together to form an “issue group”.

• There are three types of issue groups: Combined, Arithmetic, and To/From.

– The Combined issue group includes all signals used for both arithmetic and To/From instructions.

– The To/From issue group includes all signals used for To/From instructions.

– The Arithmetic issue group includes all signals used for arithmetic instructions.

• A particular issue group is delineated by a unique suffix of the form “_m” wherem is an integer that signifies the
“issue group” for those signals. The value ofm must be between 0 and 7, inclusive. BecauseCP_order_m has only
three bits, there cannot be more than eight issue groups.

• Signals that are not associated with an issue group do not have the “_m” suffix.

• An integer processor core must have at least one Combined issue group. This group must be assigned as iss
0 (m = 0). The integer processor core can have up to seven additional issue groups of any type.

Note:Depending on the implementation of this interface on the integer processor core and the coprocessor, some
while present are unused. Unused input signals on a particular implementation must be connected to their inactiv

4.4.1 Single-Issue Support

An integer processor core that supports only single issues will implement a single Combined issue group as fo

• This group is Issue Group 0 (m = 0).

• CP_adisable_0 andCP_tfdisable_0 cannot be implemented. Because this is the only issue group, these instruc
can never be disabled.

• CP_order_0[2:0] cannot be implemented. Because there is only one issue group, dispatch order is not neede
Core Coprocessor Interface Specification, Revision 1.16 16

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

4 Configurations

is case,
ps of the

e is an
groups

p 0. If
oup 1.

dy

y simply

ying off

sue two
ed.

ed issue
r

cessor

integer

d

An integer processor core with this configuration can be used with a coprocessor with more issue groups. In th
the Combined issue group of the coprocessor is connected to the integer processor core and the other issue grou
coprocessor are tied inactive.

4.4.2 Limited Dual-Issue Support

An integer processor core that supports limited dual issues supports dual issuing of instructions only, where on
arithmetic coprocessor instruction and the other is a To/From coprocessor instruction. With this option, two issue
are implemented - one combined (Issue Group 0) and one arithmetic (Issue Group 1).

• If CP_adisable_1is asserted, the integer processor core must dispatch arithmetic instructions using Issue Grou
CP_adisable_1 is deasserted, the integer processor core must dispatch arithmetic instructions using Issue Gr

• CP_adisable_0 andCP_tfdisable_0 cannot be implemented.CP_tfdisable_0 is not needed because this is the only
issue group for To/From instructions; these instructions cannot be disabled.CP_adisable_0is not needed because the
integer processor core only uses the combined interface for arithmetic instructions if the coprocessor is alrea
assertingCP_adisable_1 for the Arithmetic Issue group.

The above rules allow a single-issue coprocessor to be used with a limited dual-issue integer processor core b
connecting the combined issue groups together and assertingCP_adisable_1.

Coprocessors with more multi-issue support can be connected to a limited dual-issue integer processor core by t
unused issue groups on the coprocessor.

4.4.3 Dual Arithmetic Issues

An integer processor core that supports full dual issues supports all the cases of limited dual issues, plus it can is
arithmetic instructions or two To/From instructions. With this option, two combined issue groups are implement

A single-issue coprocessor can be used with a dual-issue integer processor core by simply connecting the combin
groups together and assertingCP_adisable_m andCP_tfdisable_m for the second combined issue group of the intege
processor core.

A limited dual-issue coprocessor can be used with a dual-issue integer processor core by connecting the copro
combined issue group to one of the integer processor core’s combined issue groups and assertingCP_adisable_mfor that
issue group. Then connect the coprocessor’s arithmetic issue group to the remaining combined issue group of the
processor core and assertCP_tfdisable_m for that issue group.

4.4.4 Additional Multi-Issue Support

The rules explained in the previous section can be easily extrapolated for up to eight simultaneously dispatche
instructions from the integer processor core.
Core Coprocessor Interface Specification, Revision 1.16 17

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

5 Interface Protocols

es the

ssor

l is

xcept

n the
ized in

other
5 Interface Protocols

This section describes the different types of transfers that occur over the Coprocessor Interface. It also describ
function of specific signals including hardware and idle indicators and reset.

5.1 Overview of Transfers

The Coprocessor Interface is composed of several simple transfers:

• Instruction Dispatch - Starts coprocessor instructions.

• To COP Data - Transfers data to the coprocessor.

• From COP Data - Transfers data from the coprocessor.

• Coprocessor Condition Code Checking- Transfers the coprocessor condition check result to the integer proce
core.

• GPR Data - Transfers additional data from the integer processor core’s general-purpose register file to the
coprocessor.

• Coprocessor Exceptions - Notifies the integer processor core if any coprocessor exceptions happened for an
instruction.

• Instruction Nullification - Notifies the coprocessor whether instructions are nullified or not.

• Instruction Killing - Notifies the coprocessor when instructions can commit state or not.

All transfers use the following protocol:

1. All transfers are synchronously strobed; that is, a transfer is only valid for one cycle (when the strobe signa
asserted). The strobe signal is a synchronous signal. Do not use it to clock registers.

2. No handshake confirmation of transfer.

3. No flow control except for instruction dispatches.

4. Out-of-order transfers are not allowed except for To/From COP data transfers. All transfers of a given type, e
To/From COP data transfers, in the same issue group must be in dispatch order.

5. Ordering of different types of transfers for the same instruction is not restricted.

After an instruction is dispatched, additional information about that instruction must be later transferred betwee
coprocessor and the integer processor core. The additional information and the transfers required are summar
Table 8.

Note: For each dispatch type given in the table, all listed transfers arerequired to be done. No transfers are optional.
However, after an instruction is killed or nullified, any transfers that have not already happened will not happen. In
words, once an instruction is killed or nullified, no further transfers for that instruction can happen.

Table 8 Transfers Required for Each Dispatch

Dispatch Type Required Transfers
Direction

Core <—> COP

To COP Op

• Instruction nullification

• To Coprocessor data transfer

• Coprocessor exceptions

• Instruction killing

—>

—>

<—

—>
Core Coprocessor Interface Specification, Revision 1.16 18

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

5 Interface Protocols

fer can
ly.

sor core
eted.
xpect
lls on the

—if the
asserted

ame

 cycle
appen.

10.
Each transfer can occur as early as one cycle after dispatch, and there is no maximum limit on how late the trans
occur. Only the dispatch interfaces have flow control. Thus, once dispatched, all transfers can occur immediate

The Coprocessor Interface operates with coprocessors of any pipeline structure and latency. If the integer proces
requires a specific transfer by a certain cycle, the integer processor core must stall until the transfer has compl
However, if an exceptional instruction (CpU, MDMX, RI) was dispatched then the integer processor core cannot e
that the coprocessor is able to return any transfers. In that case the integer processor core must release any sta
instruction and send an instruction kill transfer.

All transfers are strobed. The data is not buffered and is transferred in the cycle that the strobe signal is asserted
strobe signal is asserted for two cycles, then two transfers occur. For instruction dispatches, the strobe signal is
in the cycle after the instruction is dispatched in order to insulate the signals from poor timing.

Figure 2shows examples of the transfer of nullification information. However, all non-dispatch transfers follow the s
protocol.

Figure 2 General Transfer Example

On edge 4,CP_nulls_mis asserted, signifying the null transfer for Instruction A. SinceCP_null_mis deasserted on edge
4, Instruction A is not nullified. Instruction B is dispatched on edge 4 and it receives the null transfer in the next
at edge 5. Because it is the cycle after dispatch, this is the earliest possible time any transfer for Instruction B can h
Instruction C is dispatched at edge 5. However, the nullification transfer is delayed for some reason until edge

From COP Op

• Instruction nullification

• From Coprocessor data transfer

• Coprocessor exceptions

• Instruction killing

—>

<—

<—

—>

Arithmetic COP Op

• Instruction nullification

• Coprocessor exceptions

• Instruction killing

—>

<—

—>

Additionally for
BC1a

BC2a

MOVFa

MOVTa

• Condition code check results

<—

Additionally for
MOVZ.fmt1

MOVN.fmta

ALNV.PSa

ALNV.fmt a

• GPR Data

—>

1. For a description of this instruction, refer to the MIPS ISA definition.

Table 8 Transfers Required for Each Dispatch (Continued)

Dispatch Type Required Transfers
Direction

Core <—> COP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CP1_as_m

CP_ir_m[31:0] BA C

CP_nulls_m

CP_null_m

Clock
Core Coprocessor Interface Specification, Revision 1.16 19

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

5 Interface Protocols

 of a
which

hmetic
lowed

n is

er
n may
escribed

sfer
d those

, the
oes not

s
bles the
al.

effect

ring

or must

tion

gh the
r

by the

ed in

gnize all
ented
For all transfers except To COP Data and From COP Data, the ordering of the transfers is simple: all transfers
specific type (for example, nullification transfers) in a specific issue group must be in the same order as the order in
the instructions were dispatched. However, other kinds of transfers can be interspersed—for example, if four arit
instructions were dispatched, there could be two nullification transfers, followed by four exception transfers, fol
by two nullification transfers.

If an instruction is killed or nullified, no remaining transfers for that instruction occur. In the cycle that the instructio
being killed or nullified, transfers can occur, but they are ignored.

The integer processor core is typically pipelined internally. This may imply bindings on what transfers the integ
processor core requires before returning other transfers. For instance, an integer processor core implementatio
require that the coprocessor returns From data before the kill transfer can happen. Such requirements should be d
in the documentation for the integer processor core.

5.2 Instruction Dispatch Transfer

The instruction dispatch transfer signals the coprocessor to start executing coprocessor instructions. Data tran
instructions include those that move data to the coprocessor from the integer processor core (To COP Ops), an
that move data from the coprocessor to the integer processor core (From COP Ops).

Because data transfers for To COP and From COP instructions occur later than the dispatch of the instructions
coprocessor itself must keep track of data hazards and stall its pipeline accordingly. The integer processor core d
track coprocessor data hazards.

CP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, andCP2_fs_mare asserted in the cycle after the instruction i
driven. These signals are delayed strobe signals; although this delay complicates the functional interface, it ena
processor to achieve very good timing on these signals—without this delay, these signals would be timing-critic

Because the above instruction strobes are delayed, the coprocessor is normally required to registerCP_ir_m in every
cycle and conditionally use it in the following cycle depending on the instruction strobes. This protocol has the side
of registering non-coprocessor instructions and partially processing them, thus potentially increasing power
consumption. TheCP_irenable_m signal compensates for this effect by enabling the coprocessor to avoid registe
instructions that will never be dispatched to it.

Only one of the instruction strobes in an issue group can ever be asserted at the same time:CP1_as_m, CP2_as_m,
CP1_ts_m, CP2_ts_m, CP1_fs_m, andCP2_fs_m. However, if multiple enabled issue groups exist, more than one
instruction can be dispatched per cycle. When two instructions are dispatched at the same time, the coprocess
know their program order to properly calculate dependencies. This information is output onCP_order_m[2:0] . For the
first instruction,CP_order_m is 0. For the next instructionCP_order_m is 1, and so on.

By assertingCP_adisable_m or CP_tfdisable_m appropriately, coprocessors that do not support superscalar opera
can disable it.

The integer processor core is allowed to dispatch an instruction within the To/From/Arithmetic groups even thou
instruction is exceptional due to RI, MDMX and CpU exceptions. If such an instruction is dispatched, the intege
processor core must subsequently kill the instruction (refer toSection 5.9, "Instruction Killing Transfer") without
expecting that the coprocessor returns any transactions. Note that RI on Arithmetic instructions must be signalled
coprocessor whereas RI on To/From instructions must be signalled by the integer processor core.

However, it is not allowed to dispatch instructions to not present hardware when using the configuration describ
Section 4.1.3, "Single Coprocessor 1 and 2". This restriction does not apply to the other proposed configurations.

The above two paragraphs implies that a coprocessor that does not support all instructions must be able to reco
possible instructions for the purpose of the interface transfers. For instance, if MDMX or paired single is unimplem
Core Coprocessor Interface Specification, Revision 1.16 20

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

5 Interface Protocols

or the

mode
or
to the

isters
te using

o use.

 in
cuted

same,

hed.
in a COP1 the coprocessor should not by mistake use a GPR transfer for the ALNV.fmt/ALNV.PS instructions f
COP1 MOVN.fmt/MOVZ.fmt instructions.

When the processor is operating in MIPS32-compatibility mode according to the User/Supervisor/Kernel/Debug
(PX, SX, andUX bits of the CP0Status register), theCP_inst32_m signal is asserted during dispatch. The coprocess
must signal a Reserved Instruction exception for any arithmetic instruction that is not MIPS32 compatible. Refer
MIPS ISA documentation for more details on MIPS32-compatibility modes in integer processor cores.

CP1_fr32_mcan be asserted during dispatch to notify the coprocessor that MIPS32-compatible floating-point reg
are enabled. Normally, the coprocessor would then change the behavior of some instructions to correctly opera
the MIPS32-compatible register file.CP1_fr32_m is asserted according to theFR bit in the CP0Statusregister.

TheCP_endian_msignal is asserted during dispatch to notify the coprocessor of the proper byte-ordering mode t
This indication is needed for the ALNV.fmt and ALNV.PS instructions.

TheCP2_kd_mode_m signal is asserted during dispatch to notify the coprocessor that the instruction is executed
Kernel or Debug mode. This allows for implementation of COP2 coprocessor instructions which cannot be exe
outside Kernel or Debug mode.

Figure 3shows waveforms for an example Coprocessor 1 dispatch. Dispatch of Coprocessor 2 instructions is the
with different signal names.

Figure 3 Arithmetic Coprocessor Dispatch Waveform

On edge 2, Instruction A is dispatched. On edge 3,CP1_as_1 is asserted, validating the previous cycle’s dispatch.
CP1_as_1 is always asserted in the cycle after the instruction word is driven. On edge 3, Instruction K is dispatc
CP1_fs_0 is asserted on edge 4.

On edge 5, Instruction B is dispatched. On edge 6, Instruction C is driven ontoCP_ir_1, and Instruction L is driven onto
CP_ir_0. Instruction C is not dispatched becauseCP1_abusy_1 was asserted. But Instruction L was dispatched. For
Instruction C, the integer processor core does not assertCP1_as_1 until the coprocessor can accept it (when
CP1_abusy_1 is deasserted). Instruction C is finally dispatched on edge 9.

On edge 12, both Instructions D and M are dispatched at the same time.CP_order_0andCP_order_1are valid on edge
13 and indicate that Instruction M was functionally before Instruction D.

CP1_as_1

CP_ir_1[31:0]

CP1_abusy_1

C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B

16

CP1_fs_0

CP_ir_0[31:0]

CP1_tbusy_0
LK

CP1_ts_0

D

M

CP_endian_0,CP1_fr32_0,CP_inst32_0
CP_order_0[2:0]

CP1_fbusy_0

CP_endian_1,CP1_fr32_1,CP_inst32_1

0 00

CP_order_1[2:0] 0 10

CP_irenable_1

CP_irenable_0

Clock

0

Core Coprocessor Interface Specification, Revision 1.16 21

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

5 Interface Protocols

OP Ops
atched.

different

nding
transfers
ing to

, and C
ding
nding
is

 Op has
for this

in a
or, the
oldest

s up to
limit the

 only
5.3 To Coprocessor Data Transfer

The Coprocessor Interface transfers data to the coprocessor after a To COP Op has been dispatched. Only To C
utilize this transfer. The coprocessor must have a buffer available for this data after the To COP Op has been disp
If no buffers are available, the coprocessor must assertCP1_tbusy_m or CP2_tbusy_m, as appropriate, to prevent
dispatch.

The Coprocessor Interface allows out-of-order data transfers; that is, data can be sent to the coprocessor in a
order from the order in which the instructions were dispatched. When data is sent to the coprocessor, the
CP_torder_m[2:0] signal is also sent. This signal tells the coprocessor whether the data word is for the oldest outsta
To COP data transfer, the second oldest, or the third oldest, etc. The Coprocessor Interface allows up to eight
to be outstanding while returning data for the next transfer. The coprocessor can limit the extent of this reorder
match what its hardware supports using theCP_tordlim_m[2:0] signal.

The type of instruction dispatched determines which bits on the bus are valid:

• 32-bit transfer: The 32-bit data word is driven onCP_tdata_m[31:0] .

• 64-bit transfer: The 64-bit data word is driven onCP_tdata_m[63:0] .

Figure 4shows waveforms for an example To Coprocessor data transfer. Three instructions are dispatched: A, B
on edges 2, 4, and 6, respectively. Data for Instruction A is sent on edge 6. At that time, it is the oldest outstan
transfer, soCP_torder_mis set to 0. On edge 10, data for Instruction C is sent. Because it is the second oldest outsta
transfer,CP_torder_mis set to 1. In the following cycle, data for Instruction B is finally transferred. That instruction
now the oldest outstanding instruction, soCP_torder_m is again set to 0.

Figure 4 To Coprocessor Data Transfer Waveforms

5.4 From Coprocessor Data Transfers

The Coprocessor Interface transfers data from the coprocessor to the integer processor core after a From COP
been dispatched. Only From COP Ops utilize this transfer. Note that the integer processor core must have buffers
data that enable the transfer to occur in the cycle after dispatch.

The Coprocessor Interface allows out-of-order transfer of data; that is, data can be sent from the coprocessor
different order from the order in which the instructions were dispatched. When data is sent from the coprocess
CP_forder_m[2:0] signal is also sent. This signal tells the integer processor core whether the data word is for the
outstanding From COP data transfer, the second oldest, or the third oldest, etc. The Coprocessor Interface allow
eight transfers to be outstanding while returning the data for the next transfer. The integer processor core can
extent of this reordering to match what its hardware supports using theCP_fordlim_m[2:0] signal.

For single-word transfers, the coprocessor must drive the 32-bit value on bothCP_fdata_m[31:0] and
CP_fdata_m[63:32], making the transfer independent of the byte ordering (big or little endian).

Note: For integer processor cores that only support 32-bit COP2, From COP Data is always 32 bits wide and is
driven onCP_fdata_m[31:0] .

CP1_ts_m

CP_ir_m[31:0] Ai

CP_tds_m

CP_tdata_m[63:0]

Bi

Ad

Ci

Cd

CP_torder_m[2:0]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

00 1

Bd

Clock
Core Coprocessor Interface Specification, Revision 1.16 22

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

5 Interface Protocols

atched

ruction

ruction

ssor to
ns are

cute that
ional
processor
F and

cessor
and

o
eck the
Figure 5shows waveforms for an example From Coprocessor data transfer. The A, B, and C instructions are disp
on edges 2, 3, and 4, respectively. The coprocessor returns the data for Instruction A on edge 4.

Figure 5 From Coprocessor Data Transfer Waveforms

On edge 5, the data for Instruction C is returned. Note that Instruction C’s data is returned before the data for Inst
B and is thus out-of-order (indicated onCP_forder_m= 3’b1).

Instruction D is dispatched on edge 9. At the same time, the data for Instruction B is sent. On edge 10, data for Inst
D is sent one cycle after dispatch, which is the fastest data return possible.

5.5 Condition Code Checking

The Coprocessor Interface provides signals for transferring the result of a condition code check from the coproce
the integer processor core. Only BC1, BC2, MOVF and MOVT instructions utilize this transfer. These instructio
dispatched to both the integer processor core and the coprocessor.

For each instruction dispatched, a result is sent back to the integer processor core that says whether or not to exe
instruction. For branches, the coprocessor tells the integer processor core whether or not to branch. For condit
moves, the coprocessor tells the integer processor core whether or not to do the move. For this reason, the co
must interpret the type of instruction to decide whether or not to execute it. Customer-defined BC1, BC2, MOV
MOVT instructions are thus possible.

Condition code check transfers follow the generic example given inFigure 2 on page 19. The signalsCP_cccs_m and
CP_ccc_m are used instead ofCP_nulls_m andCP_null_m as shown in the figure.

5.6 GPR Data Transfers

The integer processor core transfers the results of a check that RT == 64’b0 for the two special arithmetic Copro
1 instructions, MOVN.fmt and MOVZ.fmt. It also transfers the lower three bits of the RS operand for the ALNV.PS
ALNV.fmt Coprocessor 1 instructions. When these instructions are dispatched to the coprocessor, they are als
dispatched to the integer pipeline. In this way, the integer processor core can properly bypass RS as well as ch
RT value against zero.

GPR data transfers follow the generic example given inFigure 2 on page 19. The signalsCP1_gprs_m and
CP1_gpr_m[3:0] are used instead ofCP_nulls_m andCP_null_m as shown in the figure.

5.7 Coprocessor Exceptions

All instructions dispatched utilize this transfer. It is used to signal if an instruction caused an exception in the
coprocessor. This transfer must happen even if the instruction did not cause an exception in the coprocessor.

CP1_fs_m

CP_ir_m[31:0] Ai

CP_fds_m

CP_fdata_m[63:0] BdAd

Bi Di

Dd

Ci

Cd

CP_forder_m[2:0]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

00 01

Clock
Core Coprocessor Interface Specification, Revision 1.16 23

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

5 Interface Protocols

core so it
r any
eptions
n codes

his
Cx data

gnalled
ot wait

ssor as

ns that

tions.

ly after
r that

interrupt

ssor
n begin

se, all
slot of

in with

rs for
 integer
When a coprocessor instruction causes an exception, the coprocessor must signal this to the integer processor
can start execution from the exception vector. The coprocessor can signal a Reserved Instruction exception fo
instruction dispatched to it. However, the coprocessor should only signal FPE exceptions for COP1 and C2E exc
for COP2. The coprocessor can also signal one of two implementation-specific exception codes. These exceptio
can be used to trigger special software exception handling routines.

Note: A coprocessor can signal an exception for To/From COP Ops. Except for CTC1 and CTC2 instructions, t
exception cannot depend on the associated data, implying that the integer processor core must transfer the CT
before it requires the exception information to prevent a deadlock condition.

Note: An integer processor core cannot expect that a coprocessor will return any additional transfers if it has si
that an instruction is exceptional. The integer processor core must thus release stalls for that instructions and n
for e.g. From COP Data or CCC transfers.

Signalling for Reserved Instruction exceptions are divided between the integer processor core and the coproce
follows:

• The integer processor core signals Reserved Instruction exceptions for non-arithmetic coprocessor instructio
are not valid To COP Ops or From COP Ops.

• The coprocessor hardware must signal Reserved Instruction exceptions for all arithmetic coprocessor instruc

The integer processor core detects Coprocessor Unusable exceptions and MDMX Unusable exceptions for all
coprocessor instructions.

If imprecise coprocessor exceptions are allowed, the coprocessor can use the “No exception” signal immediate
dispatch to prevent stalling in the integer pipeline while waiting for precise results. If an exception does occur fo
instruction, a subsequent coprocessor instruction can be flagged as exceptional (although imprecise) or else an
could be signalled through the normal integer processor core interrupt inputs.

Exception transfers follow the generic example given inFigure 2 on page 19. The signalsCP_excs_m, CP_exc_m, and
CP_exccode_m[4:0] are used instead ofCP_nulls_m andCP_null_m as shown in the figure.

5.8 Instruction Nullification Transfers

All instructions dispatched utilize this transfer. It is used to signal if an instruction was nullified in the integer proce
core. This transfer must happen even if an instruction was not nullified so that the coprocessor knows when it ca
operation of subsequent operations that depend on the result of the current instruction.

Normally, an instruction is killed only when the pipeline is being flushed because an exception occurred. In this ca
subsequent instructions in the pipeline are also killed. An instruction can also be killed because it is in the delay
a branch-likely instruction that did not branch. This type of killing is calledinstruction nullification. In this case,
subsequent instructions in the pipeline are unaffected by the nullification.

Nullification must be performed in an early stage of the pipeline to ensure that subsequent instructions can beg
the correct operands.

In the cycle that an instruction is nullified, other transfers for that instruction can still occur, but no further transfe
that instruction can occur in subsequent cycles. Exceptions caused by a nullified instruction are masked by the
processor core.

Nullification transfers follow the generic example given inFigure 2 on page 19.
Core Coprocessor Interface Specification, Revision 1.16 24

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

5 Interface Protocols

. This
back

s logic

ght need
ption,

son, as

 Ops in
(s) might
ruction
s. A

lled to

e various
5.9 Instruction Killing Transfer

All instructions dispatched utilize this transfer. It is used to signal whether or not an instruction can commit state
transfer must happen even if an instruction is not being killed so that the coprocessor knows when it can write
results for the instruction.

Due to various exceptional conditions, any instruction might need to be killed. The integer processor core contain
which tells the coprocessor when to kill coprocessor instructions.

When a coprocessor instruction is being killed because of a coprocessor-signalled exception, the coprocessor mi
to perform special operations. For example, if a floating-point instruction is killed because of a Floating-point exce
the coprocessor must update exception status bits in the coprocessor’sFCSR register. On the other hand, if that same
instruction was killed because of a higher-priority exception, those status bits must not be updated. For this rea
part of the kill transfer, the integer processor core tells the coprocessor if the instruction is killed due to a
coprocessor-signalled exception.

When a coprocessor instruction is killed, all subsequent coprocessor arithmetic instructions and To/From COP
the same issue group that have been dispatched are also killed. This is necessary because the killed instruction
affect the operation of subsequent instructions (for example, because of bypassing). In the cycle in which an inst
is killed, other transfers can occur, but after that cycle, no further transfers occur for any of the killed instruction
side-effect is that the other instructions that are killed do not have a kill transfer of their own. In effect, they are
immediately killed and thus their remaining transfers cannot be sent, including their own kill transfer. Previously
nullified instructions do not have a kill transfer either, because once nullified, no further transfers can occur.

Note:If the integer processor core dispatches a coprocessor instruction in the same cycle that a kill is being signa
the coprocessor, then the same kill signals kills that instruction as well.

Killing transfers follow the generic example given inFigure 2 on page 19. The signalsCP_kills_mandCP_kill_m[1:0]
are used instead ofCP_nulls_m andCP_null_m as shown in the figure.

5.10 Transfer Example

Figure 6 shows an example of a complete transfer sequence on a COP1 coprocessor interface generated by th
types of instructions listed inTable 9.

Note that the example does not cover all possible scenarios.
Core Coprocessor Interface Specification, Revision 1.16 25

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

5 Interface Protocols
Figure 6 Complete COP1 Sequence

Table 9 Transfers in Above Waveform (numbers refer to clock cycles)

Inst Opcode Dispatch Null
To

Data
From
Data CCC GPR Exc Kill

A MTC1 / LWC1 1 4 4 - - - 4 4

B MFC1 / SWC1 3 5 - 8 - - 6 7

C ADD.s 6 9 - - - - 9 9

D BC1 8 111

1. This transfer nulls instruction D and inhibits further transfers for this instruction.

- - 11 - - -

E MOVZ.s 10 13 - - - 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CP1_fs_0

CP1_tbusy_0

CP1_ts_0

CP1_endian_0,CP1_fr32_0,CP1_inst32_0
CP1_order_0

CP1_fbusy_0

CP1_irenable_0

Clock

CP1_as_0

CP1_abusy_0

A B C D ECP1_ir_0

A B C D E

0 0 0 0 0

CP1_nulls_0

CP1_null_0

CP1_tds_0

CP1_torder_0 0

ACP1_tdata_0

CP1_fds_0

CP1_forder_0 0

BCP1_fdata_0
CP1_cccs_0

CP1_ccc_0

CP1_gprs_0

CP1_gpr_0
CP1_excs_0

CP1_exc_0

CP1_exccode_0
CP1_kills_0

CP1_kill_0 0 0 0 3
Core Coprocessor Interface Specification, Revision 1.16 26

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

5 Interface Protocols

 of the

ls is

ssor

ignal
ill

hen
ernal

ust
tched
,
cessor

cessor

s

5.11 Miscellaneous Coprocessor Signals

This section describes the function of the hardware and coprocessor indicators. It also describes the operation
coprocessor reset signal.

5.11.1 Hardware Present Signaling

Three Coprocessor Interface static inputs (CP1_fppresent, CP1_mdmxpresent, andCP2_present) enable the integer
processor core to know what type of hardware is connected to the Coprocessor Interface. If one of these signa
asserted and the respective hardware is not available to handle the instructions, the operation isUNDEFINED , and the
integer processor core might hang.

The three signals drive theFP, MD andC2 bits of the CP0Config1 register, respectively. If eitherFP or MD is set, the
CU1bit in the CP0Statusregister can be set by software. IfC2 is set, theCU2bit in the CP0Statusregister can be set
by software.

If the CU1bit in the CP0Statusregister is cleared the execution of a COP1 instruction will cause the integer proce
core to signal a Coprocessor Unusable exception. Likewise, a clearedCU2 bit in theStatus register will cause a
Coprocessor Unusable exception when executing a COP2 instruction.

If CP1_mdmxpresentis deasserted, the execution of an MDMX instruction will cause the integer processor core to s
a Reserved Instruction exception. IfCU1 is deasserted (but the MDMX hardware is present) an MDMX instruction w
cause a Coprocessor Unusable exception. Likewise, if the MDMX hardware is present, but the MX bit in CP0Status
register is deasserted, then an MDMX Unusable exception will be signalled.

5.11.2 Coprocessor Idle

The Coprocessor Interface includes an idle indication from the coprocessor,CP_idle. The coprocessor deasserts this
signal whenever it is performing a calculation, and asserts this signal when it has no instructions in progress. W
asserted,CP_idle allows the integer processor core to enter a low-power mode, potentially shutting down the int
integer processor core clock.CP_idle is ignored if no coprocessor is using the Coprocessor Interface (when
CP1_fppresent, CP1_mdmxpresent, andCP2_present are all deasserted).

Since the coprocessor will deassertCP_idlewhen any instruction is in-progress, the integer processor core design m
take into account instructions that will not complete before entering power-down mode. If an instruction is dispa
to the coprocessor, the coprocessor will not assertCP_idleuntil that instruction is completed. In the MIPS architecture
the WAIT instruction enables low-power mode and normally stalls the integer processor pipeline. The integer pro
core can solve this problem in several ways:

• Do not dispatch instructions after a WAIT instruction.

• Nullify all instructions that are dispatched after a WAIT instruction.

• Kill all instructions that are dispatched after a WAIT instruction.

• IgnoreCP_idle after a certain number of cycles.

Unless one of the above solutions or something similar is used, the coprocessor holdsCP_idle deasserted because
dispatched instructions cannot complete due to the WAIT instruction being stalled in the pipeline. The integer pro
core will never enter low-power mode due to the fact thatCP_idle is deasserted.

5.11.3 Reset

When the integer processor core is reset, it assertsCP_reset. On reset, the coprocessor must stop all in-progress
operations and reset all control state machines to their idle states. WhenCP_resetis asserted, any in-progress protocol
Core Coprocessor Interface Specification, Revision 1.16 27

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

5 Interface Protocols

or must

ing the
ssor
nd
are broken, and all transfers immediately stop. All signals must reset to their inactive states by the cycleCP_reset is
deasserted.

Note: CP_resetcan be asserted for as few as two cycles, although longer assertions are legal. Thus the coprocess
properly reset even whenCP_reset is asserted for only two cycles.

After CP_resetis deasserted, transactions are not started on the Coprocessor Interface for at least four cycles, giv
coprocessor extra time to reset its state machines before a new instruction is dispatched. However, all Coproce
Interface signals must still be deasserted by the cycleCP_resetis deasserted so that both the integer processor core a
the coprocessor start transfers cleanly after reset.
Core Coprocessor Interface Specification, Revision 1.16 28

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

A Revision History

ant
e note of
hange

ge bars
tion set
in these
Appendices

A Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of signific
changes to this document since its last release. Significant changes are defined as those which you should tak
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with c
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Chan
on figure titles are used to denote a potential change in the figure itself. Certain parts of this document (Instruc
descriptions, EJTAG register definitions) are references to Architecture specifications, and the change bars with
sections indicate alterations since the previous version of the relevant Architecture document.

Table 10 Revision History

Rev Date Comments

0.1 May 31, 2000 Initial version.

0.2 June 1, 2000 Added Open issues.

0.3 June 5, 2000 Updated after review.

0.4 June 15, 2000 32-bit dynamic mode - removedCP_tduw, changed definitions for
single-word transfers.

0.5 June 20, 2000 Updated post-review.

1.0 July 10, 2000 Final post-review edits.

1.1 July 27, 2000 Results from Vidya review.

1.2 October 23, 2000 Added notes of clarification that unused inputs must be connected
inactive.

1.3 Nov 17, 2000

• Clarified description of which instructions are killed by a kill
signal.

• Clarified the fact that coprocessor conditional instructions and
instructions that test integer processor core registers are dispatched
as arithmetic instructions.

1.4 Nov 29, 2000 Added a note about the term “integer processor core” to Section 1.

1.5 Dec 4, 2000
• Split section 5.9 into three subsections.

• Added new section 5.9.3 describing reset behavior.

1.6 Dec 5, 2000 Changed minimum reset length from 1 cycle to 2 cycles.

1.7 Jan 8, 2001
Added a note of clarification about instruction strobes—they can be
asserted for additional instructions as long as those instructions are
killed.

1.8 Feb 8, 2001 Added section 4.1.5 describing a processor with two Coprocessor
Interfaces.

1.9 Feb 13, 2001 Added note to section 5.6 clarifying stalls for exceptional instructions.
Core Coprocessor Interface Specification, Revision 1.16 29

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

A Revision History
1.10 Feb 16, 2001

• Changed CP_tx32 -> CP2_tx32.

• Changed CP_fr32_m -> CP1_fr32_m.

• Added description for CP_idle relating to integer processor core
design and a potential lock-out condition where low-power mode
would never be entered.

1.11 March 30, 2001 Converted to new template.

1.12 June 12, 2001

Explicitly listed all To/From COP Ops in Section 2.

Changed CP_* signal names for all configurations except the ’shared’
COP1/COP2 option.

Clarified how dispatch works around CpU/RI/MDMX exceptions.

Corrected section 5.10.1.

1.13 August 31, 2001 Document template updated.

1.14 March 22, 2002

Added MIPS32 Release 2 M{F|T}HC{1|2} instructions (section 2)

Added CP2_kd_mode_m signal.

Minor clarifications (sections 4.1.4, 5.1, 5.2)

Complete transfer example (section 5.10)

1.15 September 25, 2002
Added opcodes for all listed instructions (section 2)

Minor clarifications and typos (sections 2, 5.3, Revistion History)

1.16 August 20, 2004
Removed Implementation Specific 2 exception code

Updated templates

Table 10 Revision History

Rev Date Comments
Core Coprocessor Interface Specification, Revision 1.16 30

Copyright © 2000-2004 MIPS Technologies Inc. All rights reserved.

	Core Coprocessor Interface Specification
	1� Introduction
	2� Coprocessor Instructions
	3� Signal Descriptions
	4� Configurations
	4.1� Types of Coprocessors
	4.1.1� Single Coprocessor 1
	4.1.2� Single Coprocessor 2
	4.1.3� Single Coprocessor 1 and 2
	4.1.4� Dual Coprocessors using Separate Interfaces
	4.1.5� No Coprocessors

	4.2� Data Transfer Widths
	4.2.1� 64-bit Transfer Width
	4.2.2� 32-bit Transfer Width (Cop2 only)

	4.3� Out-of-Order Data Transfers
	4.4� Multi-Issue Support
	4.4.1� Single-Issue Support
	4.4.2� Limited Dual-Issue Support
	4.4.3� Dual Arithmetic Issues
	4.4.4� Additional Multi-Issue Support

	5� Interface Protocols
	5.1� Overview of Transfers
	5.2� Instruction Dispatch Transfer
	5.3� To Coprocessor Data Transfer
	5.4� From Coprocessor Data Transfers
	5.5� Condition Code Checking
	5.6� GPR Data Transfers
	5.7� Coprocessor Exceptions
	5.8� Instruction Nullification Transfers
	5.9� Instruction Killing Transfer
	5.10� Transfer Example
	5.11� Miscellaneous Coprocessor Signals
	5.11.1� Hardware Present Signaling
	5.11.2� Coprocessor Idle
	5.11.3� Reset

	Appendices
	A� Revision History

